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Abstract. Using the results of the recently studied problem of adsorption of a Gaussian polymer in a weak
periodic surface potential we study the influence of a single rod like defect on the polymer being localized
in the periodic surface potential. We have found that the polymer will be localized at the defect under
condition u > uc, where uc is the localization threshold in the periodic potential, for any infinitesimal
strength of the interaction with defect. We predict that the concentration of monomers of the localized
polymer decays exponentially as a function of the distance to the defect and is modulated with the period
of the surface potential.

PACS. 36.20.-r Macromolecules and polymer molecules – 82.35.Gh Polymers on surfaces; adhesion –
73.20.-r Electron states at surfaces and interfaces

1 Introduction

Adsorption of polymers at surfaces and interfaces is of
large interest in different topics of science and technology
and has been investigated extensively in recent years [1–4]
(and citations therein). The effects of surface hetero-
geneities, which is of wide interest for different applica-
tions such as pattern recognition, technological and bi-
ological applications etc., have been studied in [5–14].
Recently, we have considered the problem of adsorption
of a Gaussian polymer in a weak periodic surface poten-
tial [15]. We present here the details of these calculations
and apply the method we used in [15] to study the lo-
calization of a Gaussian polymer in the periodic surface
potential disturbed by a single defect.

The problem of the behaviour of a Gaussian polymer
in an external potential is equivalent to the problem of the
behaviour of a quantum mechanical particle in an external
potential [1,2]. According to this mapping our results for
polymer adsorption are valid for localization of a quantum
mechanical particle in the periodic external potential. In
the case of polymer the periodic surface potential can be
realized by the surface of a microphase separated diblock
copolymer melt (see for example [16,17] and references
therein), while in the quantum mechanical counterpart of
the problem in context of semiconductor superlattices [18]
(and references therein).

The paper is organized as follow. After brief introduc-
tion to the model and the Green’s function method in
Section 2, we consider in details the problem of adsorption
of a polymer chain in a weak periodic surface potential.
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Fig. 1. The periodic surface, which is modelled by the poten-
tial in equation (1).

In Section 3 we study the effect of a single defect on the
polymer being localized in the periodic surface potential.

2 Adsorption of a polymer in the periodic
surface potential

The periodic surface potential can be described by

V (x, y, z) = −uδ(z − z0)
∞∑

n=−∞
δ(x− na), (1)

where u, a, z0 are assumed to be positive, and δ(x) is the
Dirac’s delta-function. The potential models rods which
are parallel to the y axis with the distance a along the
x axis between the next neighbors (see Fig. 1). The size
of the rods w, which is suppressed in (1), is however a
relevant quantity as it will be shown below. Due to the
impenetrability of the wall at z = 0 the distance of the



210 The European Physical Journal B

potential well to the surface is chosen as z0. As it is well-
know from Quantum Mechanics [19] the delta-function po-
tential corresponds to the shallow potential well. The limit
to the homogeneously attracting surface can be obtained
from (1) by a→ 0 and u/a→ const (see below).

The Green’s function of a polymer in an external po-
tential, which gives the relative number of conformations
of the chain with the ends fixed at r and r′, obeys the
following equation

∂

∂N
G(r, N ; r′)−D∇2G(x, z,N ;x′, z′) +

V (r)
kBT

G = 0

(2)

with condition G(r, 0; r′) = δ(r− r′). Here N is the poly-
merization degree of the ideal chain and D = l2/6, where
l is the statistical segment length of the chain. The equa-
tion (2) can be written as an integral equation as follows

G(x, z,N ;x′, z′) = G0(x, z,N ;x′, z′)

−
∫ N

0

ds
∫ ∞
−∞

dx1

∫ ∞
0

dz1G0(x, z,N − s;x1, z1)

×V (x1, z1)
kBT

G(x1, z1, s;x′, z′), (3)

where

G0(x, z,N ;x′, z′) =
1

4πDN
exp

(
− (x− x′)2

4DN

)
×
[
exp

(
− (z − z′)2

4DN

)
− exp

(
− (z + z′)2

4DN

)]
(4)

for N ≥ 0 and is zero for N < 0. Equation (2) is related
to the Schrödinger equation by using the replacements:
N = it, l2/3kBT = 1/m, kBT = ~. The bare Green’s
function G0(x, z,N ;x′, z′) is the solution of the diffusion
equation i.e. equation (2) with V (r) = 0 in the half space,
z ≥ 0, with the Dirichlet boundary condition at z = 0.
The dependence on y in equation (3) is separated while the
potential is independent of y. Inserting the potential (1)
into (3) and carrying out the Laplace transform with re-
spect to N we arrive at

G(x, z, p;x′, z′) = G0(x, z, p;x′, z′)

+ u
∞∑

n=−∞
G0(x, z, p; an, z0)G(an, z0, p;x′, z′), (5)

where

G0(x, z, p;x′, z′)

=
1

2πD
(K0(

√
(x− x′)2 + (z − z′)2

√
p/D)

−K0(
√

(x− x′)2 + (z + z′)2
√
p/D)), (6)

is the Laplace transform of (4), K0(x) is the modified
Bessel function of the second kind. Henceforth u is given
in units of kBT . In the case of adsorption onto an interface
only the first term on the right-hand side of (6) appears.

Restricting the summation in (5) to only one term gives
the problem of localization onto one rod. Neglecting the
z-dependence in (5) and using

G0(x, p;x′) = 1/
√

4Dp exp(− |x− x′|
√
p/D) (7)

instead of (6) gives the Green’s function formulation of
the well-known Kronig-Penney model [20]. The Kronig-
Penney model was used in [21] to study the behaviour of
a polymer in a striped potential.

We now will solve equations (5). Inserting x = an,
n = 0, ±1, ... and z = z0 into (5) we obtain an infinite
inhomogeneous system of equations for G(an, z0, p;x′, z′)

G(an, z0, p;x′, z′)− u
∞∑

m=−∞
G0(an, z0, p; am, z0)

×G(am, z0, p;x′, z′) = G0(an, z0, p;x′, z′). (8)

The periodicity of the potential (1) along the x axis, which
entails the Bloch theorem for the wave function [22], per-
mits to solve the system of equations (8) by using the
Fourier transformation. Assuming that the system con-
sists of 2M + 1 rods we consider the discrete Fourier
transform for each rod-dependent quantity Fn as follows
Fn =

∑
k eikanfk, where k = 2π

a
j

(2M+1) , (j = −M, ...,M)
is the quasimomentum. Substituting G(an, z0, p;x′, z′) =∑
k eikangk and G0(an, z0, p;x′, z′) =

∑
k eikanbk into (8)

diagonalizes the latter (in the limit of large M), so that
we obtain the solution as

gk =
bk

1− u
M∑

m=−M
eikamG0(am, z0, p; 0, z0)

· (9)

The inverse Fourier transform of (9) gives

G(an, z0, p;x′, z′) =
1

2M + 1

∑
k

1
1− uR(k, p)

×
[

M∑
m=−M

eika(n−m)G0(am, z0, p;x′, z′)

]
, (10)

where we have introduced the function

R(k, p) = G0(0, z0, p; 0, z0)

+ 2
∞∑
m=1

cos(mka)G0(am, z0, p; 0, z0). (11)

Insertion of (10) into (5) gives G(x, z, p;x′, z′) as

G(x, z, p;x′, z′) = G0(x, z, p;x′, z′)

+
u

2M + 1

∑
k

M∑
n=−M

M∑
m=−M

exp(ika(n−m))
1− uR(k, p)

×G0(x, z, p; an, z0)G0(am, z0, p;x′, z′). (12)
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In the limit M → ∞ the sum over k should be re-
placed by the integral in agreement with

∑
k f(k) →

(2M + 1)(a/2π)
∫

dkf(k). The zeros of the denominator
of (12) give the main contributions to G(x, z,N ;x′, z′) for
largeN . Taking into account the latter generates the spec-
tral expansion of the Green’s function

G(x, z,N ;x′, z′) '
∑
k

epkNψk(x, z)ψ∗k(x′, z′), (13)

where ψk(x, z) and pk are eigenfunctions and eigenvalues
of the time-independent Schrödinger equation

−D∇2ψk(x, z) +
V (r)
kBT

ψk(x, z) = −pkψk(x, z). (14)

Thus, the zeros of the denominator in equation (12) con-
sidered as function of p gives the energy eigenvalues −pk.
The comparison of the inverse Laplace transform of equa-
tion (12) with (13) gives the following expression for the
wave functions

ψk(x, z) ∼
∞∑

n=−∞
eikanG0(x, z, pk; an, z0). (15)

It is easy to check that (15) fulfils the Bloch theorem.
Notice that the exact wave function ψk(x, z) is given as
the Laplace transform of the bare Green’s function.

We now will show how to recover from (12) the case of
continuously attracting surface. The first two terms in the
denominator of (12) corresponds to the eigenvalue condi-
tion for a rod. If a is small, the sum can be replaced by the
integral as follows

∑∞
m=1 f(ma) → a−1

∫∞
0

dxf(x). The
quantity u/a = u is the surface density of the strength of
the potential. The integral over x with
f(x) = G0(x, z0, p; 0, z0) gives∫ ∞

0

dx cos(kx)G0(x, z0, p; 0, z0) = 1/(4
√
D
√
p+Dk2)

× (1− exp(−2z0/
√
D
√
p+Dk2)). (16)

The case of adsorption onto a homogeneously attracting
surface will be recovered by taking the limit u→ 0, a→ 0
and u/a = u. As it was pointed in [23] for the case of con-
tinuously interface the transverse degree of freedom are
decoupled to the in-plain degree of freedom, since the lat-
ter can be integrated out in the definition of Green’s func-
tion. The full Green’s function can be obtained from the
reduced Green’s function by replacing the Laplace trans-
form variable p through p + Dk2, where k is the wave
vector corresponding to the Fourier transformation with
respect to the in-plane coordinates. The term Dk2 is sim-
ply the energy of free motion along the surface. If we are
interested in studying the localization at the surface only
and do not consider migration of polymer along the sur-
face we can put the quasimomentum k = 0. The second
term in the denominator of (12) disappears in the limit
u → 0, so that the denominator of (12) gives the correct
eigenvalue condition, 1− u

2
√
pD

(1−exp(−2z0

√
p/D)) = 0,

for adsorption onto a homogeneously attracting surface
with the potential u(z) = −uδ(z − z0).

Equation (12) applies to the Kronig-Penney model if
one neglects there the dependences on z. The bare Green’s
function is then given by equation (7). As a result the
denominator in (12) yields

cos(ka)− cosh(
√
a2p/D) + u/(2

√
Dp) sinh(

√
a2p/D)

cos(ka)− cosh(
√
a2p/D)

·

(17)

The numerator of (17) equated to zero gives the well-
known energy eigenvalue condition for Kronig-Penney
model.

We now will consider the case of the periodic surface
potential given by (1). The bare Green’s function obeys
the Dirichlet boundary condition at z = 0 and is given
by (4). Its Laplace transform is given by

G0(am, z0, p; 0, z0) = 1/(2πD)(K0(am
√
p/D)

−K0(
√
a2m2 + 4z2

0

√
p/D)). (18)

The divergence of (18) for am → 0, which is due
to modelling the potential by Dirac’s delta-function,
can be avoided by replacing N in the first term
of the expression G0(0, z0, N ; 0, z0) = 1/(4πDN) −
1/(4πDN) exp(−z2

0/DN) by N + b with b being a mi-
croscopic cutoff along the polymer (corresponds to time
in QM language ), will be related to the size of the po-
tential well w. The necessity of introduction of the cut-
off b is due to the following. The interaction potential of
one rod is product of two delta functions, i.e. the prob-
lem is two dimensional. It is well-known from Quantum
mechanics [19] that in two dimensional potential well the
eigenenergy depends on both the depth and the width of
the potential well separately. The comparison of the bind-
ing energy in the potential −uδ(x)δ(z − z0) obtained via
the present method with the energy in a shallow two di-
mensional potential well [19] gives b = w2/4D, where w is
the radius of the potential well. The Laplace transform of
G0(0, z0, N ; 0, z0) is then obtained as

G0(0, z0, p; 0, z0) = −ebpEi(−bp)
4πD

− 1
2πD

K0(2
√
pz2

0/D),

(19)

where Ei(−x) =
∫ −x
−∞ dt exp(t)/t is the exponential inte-

gral. Notice that we can avoid the introduction of a cut-
off at intermediate steps of the work by replacing one of
delta-functions in equation (1) by the d-dimensional delta-
function with d < 1 and introducing the cutoff in carrying
out the limit d→ 1. Using (18) and (19) gives the denom-
inator of (12) as

1 +
u

4πD
exp(bp)Ei(−bp) +

u

2πD
K0(2

√
pz2

0/D)

− u

πD

∞∑
m=1

cos(amk)
[
K0(am

√
p/D)

−K0(
√
a2m2 + 4z2

0

√
p/D)

]
. (20)
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Fig. 2. The localization band for w = 1, z0 = 2, a = 10
measured in units of l for following strengths of the potential:
1. u = 0.55; 2. u = 0.6; 3. u = 0.65; 4. u = 0.7; 5. u = 0.75;
6. u = 0.8. The localized states appears for u > uc: uc = 0.54.
For u < 0.674 the quasimomentum of localized states does not
exceed the value kmax < π/a, for u > 0.674 the localized states
exist up to the edge of the Brillouin zone.

Considering (20) as an equation for p gives the spectrum
of the problem under consideration. The sum in (20) can-
not be performed exactly, so that we have solved equa-
tion (20) for p numerically. The localized states appears,
if u exceeds some threshold value uc. Figure 2 shows the
binding energy as a function of the quasimomentum k for
different strengths u. Figure 2 demonstrates that the lo-
calized states in the periodic potential form a band with
the width depending on the strength of the potential u.
The localized states exist, if the quasimomentum does not
exceed the value kmax. In contrast to a homogeneously
attracting surface, the in-plane degrees of freedom here
are coupled to the transversal degree of freedom. We ex-
pect that the width of the localization band influences
the migration of the localized polymer chain along the
surface. Due to the fact that the width is controlled by
the temperature, the in-plane migration of the polymer
will be controlled by temperature. We expect that also in
the quantum mechanical counterpart of the problem the
finite width band of surface localized states will affect the
in-plane properties (see below).

We now will consider the mean-square distance of one
end of the polymer chain to the surface, which has to be
computed according to

〈
z2(N)

〉
=

∞∫
−∞

dx
∞∫
0

dz
a∫
0

dx′z2G(x, z,N ;x′, 0)

∞∫
−∞

dx
∞∫
0

dz
a∫
0

dx′G(x, z,N ;x′, 0)
, (21)

where the integration over x′ is carried for simplicity over
the period of potential. To evaluate the (21) we have
to perform the inverse Laplace transform of (12). In the
limit of large chain lengths N → ∞ the main contribu-
tion to the inverse Laplace transform appears from the

residues associated with the poles. The computation of
〈z2〉 = limN→∞〈z2(N)〉 is straightforward and results in

〈
z2
〉

=
2D
p0

+
z2

0

1− exp
(
−z0

√
p0/D

) , (22)

where p0 is the absolute value of the ground state eigenen-
ergy associated with the quasimomentum k = 0. It is
surprising that the states with k > 0 do not contribute
to
〈
z2
〉
. We have checked that the same holds for the

mean square-distance of an arbitrary monomer, and for
the monomer distribution function ρ(x, z). This is due
to the fact that after integrating over x (x′) in equa-
tion (12) the sum over n (m) gives δ(k) so that only the
ground state contributes to

〈
z2
〉
.

The obtained spectrum allows us to investigate the
in-plane behavior of adsorbed polymer. Due to the peri-
odicity of the potential the long polymer chain behaves in
plane as free chain endowed with effective statistical seg-
ment length l2eff . To define the effective statistical segment
we compute the x-component of the mean-square end-to-
end distance of the adsorbed polymer for large N by using
equation (12) and find that〈

(x− x′)2
〉

=
1
3
l2effN, (23)

where the effective statistical segment length

l2eff = −3∂2pk/∂k
2 |k=0

can be represented as

l2eff = 3
∂2R(k, p)
∂k2

∣∣∣∣ k=0
p=p0

[
∂R(k, p)
∂p

∣∣∣∣ k=0
p=p0

]−1

.

Notice that leff defined in (23) relates to the behaviour of
the polymer along the x-axes. The numerical evaluation
of leff is shown in Figure 3 for three values of the period of
the potential a. At the localization transition leff is equal
to l. It strongly decreases for large p0 i.e. in the regime
of strong adsorption. For large strength of the potential
well u all pieces of the polymer are localized at the surface,
so that in this limit the problem of the localization in the
surface periodic potential converts to the Kronig-Penney
model. It is well-known that for this model the effective
statistical segment is smaller than the bare one [21]. The
squeezing of the polymer due to leff < l can be explained
by the fact that the polymer wins energy while the por-
tions of the polymer make excursions along the attracting
rods as it shown in Figure 1. This results in squeezing
the polymer along the periodicity direction. Notice that
the squeezing of the polymer occurs at the expense of the
transversal size of the polymer. The size of the polymer
along the y-axes does not change. Figure 3 shows that the
decrease of a results in a weaker decrease of leff . The nu-
merical analysis of the behaviour of leff in the vicinity of
the localization transition for parameters w = 1, z0 = 2,
a = 3 yields that leff/l = 1.0044 > 1 for p0 = 0.002, i.e.
leff has a weak maximum as a function of p0 (see Fig. 3).
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Fig. 3. The effective statistical segment length as a function
of the binding energy p0 for w = 1, z0 = 2 measured in units
of l. Dashed line: a = 3; Dotted line: a = 6; Continuous line:
a = 10.

The latter disappears for larger values of a. The condi-
tion leff > l means that the polymer stretches along the
x-axes. Due to this the polymer wins energy by having
contacts with more rods. We expect that the maximum
is due to the rigidity of the polymer, which however can-
not be described in a more consistent way by the present
model.

In context of the behaviour of a quantum particle (for
example an electron) in a surface periodic potential the
motion of the particle along the surface can be described
in terms of the effective mass m∗, which is the counter-
part of the statistical segment length and is proportional
to l−2

eff . Notice, that the above explanation of the inequal-
ity leff < l in terms of configurations of the polymer chain
implicates an explanation of the inequality m∗ > m in
terms of time-space trajectories of the quantum particle.
The increase of the mass is related to the size of the pieces
of the trajectory localized at the same rod. Using the
well-known formula for electric conductivity in Solid State
Physics (see for example [24]) we write the surface electric
conductivity as σ = e2τn/m∗, where m∗ is the effective
mass, e is the electron charge, τ is the relaxation time, and
n is the surface electron density. We expect that this for-
mula is valid for a weakly filled band, while in the opposite
case of an almost filled band we have to take into account
the effect of the delocalization of electrons due to the ex-
ternal field. According to Figure 3 the effective mass is
nearly everywhere larger than the bare mass. It increases
with the increase of the strength of the potential, except-
ing the vicinity of the localization transition, which is in
agreement with the prediction for Kronig-Penney model.
According to the dependence of σ on m∗ we expect that
the surface electric conductivity is a decreasing function
of the strength of the potential. This is intuitively clear
because if the size of the pieces of the trajectory of the par-
ticle along one rod is large, the driving field is ineffective
to disengage the latter from the rod.

3 Localization at a single surface defect

The real surfaces contain various defects, so that study-
ing their effect on adsorption of polymers is an important
question. In this section we consider the localization of the
polymer chain in a periodic surface potential disturbed by
a single defect. The surface potential in the presence of the
extended defect, which can be viewed as the additional rod
situated at x = x0, is modeled by the following potential

V (r) = −uδ(z−z0)
∞∑

n=−∞
δ(x−na)− vδ(x−x0)δ(z−z0),

(24)

where v is the strength of the defect. The method devel-
oped in Section 2 can be used in a straightforward way to
study the effect of the defect. For this aim we use the sys-
tem with the periodic potential (1) as the reference state,
where the Green’s function G(x, z,N ;x′, z′) in the peri-
odic potential is given by equation (10). Considering the
last term in equation (24) as perturbation we rewrite the
equation (2) as an integral equation as follows

Gd(x, z,N ;x′, z′) = G(x, z,N ;x′, z′)

+ v

∫ N

0

dsG(x, z,N − s;x0, z0)Gd(x0, z0, s;x′, z′). (25)

Henceforth the potential of defect v as the strength of the
periodic potential u is given in units of kBT . The explicit
expression for G(x, z,N ;x′, z′) appearing in (25) can be
derived by using the inverse Laplace transform of (12).
Carrying out the Laplace transform of (25) we arrive at
the following algebraic equation

Gd(x, z, p;x′, z′) = G(x, z, p;x′, z′)

+ vG(x, z, p;x0, z0)Gd(x0, z0, p;x′, z′). (26)

To solve this equation we substitute x = x0, z = z0 and
find

Gd(x0, z0, p;x′, z′) =
G(x0, z0, p;x′, z′)

1− vG(x0, z0, p;x0, z0)
· (27)

Therefore, the Green’s function Gd of the problem with
potential (24) can be expressed in terms of the Green’s
function G of the system with the ideal periodic potential
as follows

Gd(x, z, p;x′, z′) = G(x, z, p;x′, z′)

+ v
G(x, z, p;x0, z0)G(x0, z0, p;x′, z′)

1− vG(x0, z0, p;x0, z0)
· (28)

The zero of the denominator in the last term of (28) gives
the value of the eigenenergy of the state when polymer
chain is localized at the defect. The eigenenergy condition
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Fig. 4. The binding energy of localized in-plane ground state
as function of the defect’s potential v for w = 1, a = 10,
z0 = 2, u = 0.8. At v = 0 the energy coincide with the energy
corresponding to the upper edge of the band.

is obtained from (28) as

1− vG0(x0, z0, p;x0, z0)− uv a
π

π∫
−π

dk
1− uR(k, p)

×
∞∑

n,m=−∞
eika(n−m)G0(x0, z0, p; an, z0)

×G0(am, z0, p;x0, z0) = 0, (29)

where we have taken the limit N → ∞. Equation (29)
cannot be solved analytically so that we analyzed it nu-
merically. We consider the case of extended adsorbing de-
fect (v > 0) which is situated at x0 = 0. This allows us to
simplify the equation (29), so that we obtain

1− vG0(0, z0, p; 0, z0)− uv a
π

π∫
−π

dk
[R(k, p)]2

1− uR(k, p)
= 0.

(30)

The numerical calculation shows that upon condition u >
uc, where uc is the threshold value of the periodic poten-
tial, the equation (30) has a single solution pd(v) starting
at the upper edge of the band pd(0) = p0 which increases
with the strength of the defect v. The typical dependence
of pd on v is shown in Figure 4. Figure 4 shows that the
polymer is localized for any infinitesimal potential of the
defect v, if there are localized states in the periodic poten-
tial. The eigenfunction corresponding to the eigenvalue pd
is obtained from (28) using the spectral expansion of the

Fig. 5. The profile of wave function ψd(x, z) in the plane z = 3
for w = 1, a = 10, z0 = 2, u = 0.8, v = 0.01.

Green’s function (13) as

ψd ∼ G0(x, z, pd; 0, z0) + u
a

π

π∫
−π

dk
R(k, pd)

1− uR(k, pd)

×
∞∑

m=−∞
cos(mka)G0(x, z, pd; am, z0). (31)

The function ψd(x, z) decays exponentially as function of
the distance to the defect and is modulated with the pe-
riod of the periodic surface potential (see Fig. 5). Due
to the gap between the localized state and the band we
have the situation of the ground state dominance, if the
polymer chain is large enough. The consequence of this is
that only the eigenfunction (31) contributes to the Green’s
function (13). It is well-known that in this case the con-
centration of monomers is given by c(r) ∼ |ψd(r)|2 [2], so
that the oscillations of ψd(r) may be observed experimen-
tally by studying the distribution of polymer chains on
the periodic surfaces with defects.

4 Conclusion

We have considered the adsorption of a Gaussian poly-
mer (and of a quantum particle) onto an attracting sur-
face with potential periodic along one direction. We have
found that the surface localized states form a band which
can be described by the quasimomentum entailed by the
periodicity of the surface potential. The width of the lo-
calization band depends on the strength of the attract-
ing potential. The binding energy decreases with increase
of the quasimomentum and becomes zero at k = kmax,
where for not to large strengths u of the periodic poten-
tial kmax lies within Brillouin zone, i.e. kmax < π/a. For
kmax < k < π/a no localized states exist. For sufficiently
strong potential strengths (when kmax becomes equal to
π/a) the polymer is always localized.
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We have studied the effect of perturbation of the peri-
odic potential by a single rod-like defect on the adsorption
of the polymer. We have found that the defect localizes
the polymer for any infinitesimal strength of the defect
potential, so that the concentration of monomers decays
exponentially with the distance to the defect and under-
goes modulation associated with the periodic surface po-
tential. We expect, that this oscillations can be observed
experimentally by studying the distribution of polymer
chains on the periodic surfaces with defects.

The method used here can be straightforwardly ap-
plied to treat more complicated periodic arrangements
(ideal or with weak deviations from the periodicity) of
attracting wells, for example the infinite periodic set of
parallel planes along the z-axes with the potential in each
of the plane being periodic along the x- and y-axes.
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